Activity - Size and Distance Scale

SEE WHATS OUT THERE

ZIONS BANK

Objective
Students will match descriptions of various objects and distances to actual metric measurements. This is a great activity to investigate students' preconceptions about astronomical distances.

CORE concepts covered:

STANDARD IV: Students will understand the scale of size, distance between objects, movement, and apparent motion (due to Earth's rotation) of objects in the universe and how cultures have understood, related to and used these objects in the night sky.

Objective 1: Compare the size and distance of objects within systems in the universe.
a. Compare distances between objects in the solar system.
b. Compare the size of the Solar System to the size of the Milky Way galaxy.
c. Compare the size of the Milky Way galaxy to the size of the known universe.

Note: This is a good activity to complement the film Powers of Ten by Charles and Ray Eames. There is also a good Powers of Ten website at: http://micro.magnet.fsu.edu/primer/java/scienceopticsu/powersof10/

Materials Needed

"Distance \& Scale" Worksheet
Pencil

Planning
Copy worksheet, one per student

Procedure

1. Hand out worksheets which contain the list of challenge objects.
2. Students should write each challenge object from the list on the right side in the appropriate place between the distances on the distance scale to the left. Give class members plenty of time to match up the objects with their distances. Encourage opinions and discussions with other students.
3. End the activity with a vote of which object matches with the appropriate distance. Give the correct distances and sizes from the answer sheet (page 3). Be certain to discuss the difference between distance and size. It might be best to do this using an overhead projector. Alternatively, you could post several copies of the "answer sheet" and let students correct any answers that missed the mark -after having the appropriate discussion.
\qquad

Distance \& Scale

Directions: Using the spaces between the distances in the left column, write the objects or distances in the right column that best fit between those distances.

1 cm

10 cm
Diameter of a basketball

1 meter
Deepest part of the Pacific Ocean

Denver, CO to Salt Lake City, UT
10 meters
Distance to nearest star
100 meters

1 km
\qquad Earth-Sun distance
10 km
\qquad Earth-Moon distance
100 km
\qquad Earth's diameter
1000 km
\qquad Height of doorway
$10,000 \mathrm{~km}$
Height of Mt. Everest
$100,000 \mathrm{~km}$
Moon's diameter
1 million km
Sun-Mercury distance
10 million km
Ping pong ball
100 million km
Sun to Saturn distance
1 billion km
\qquad
10 billion km

Sun's diameter

Length of city block
\qquad

Distance \& Scale

Directions: Using the spaces between the distances in the left column, write the objects or distances in the right column that best fit between those distances.

1 cm	Diameter of a basketball
Ping pong ball (about 3 cm)	
10 cm	Deepest part of the Pacific Ocean
Diameter of a basketball (about 30 cm)	
1 meter	Denver, CO to Salt Lake City, UT
Height of doorway (about 2 m)	
10 meters	Distance to nearest star
House (about 15 to 20 m)	
100 meters	House
Length of city block (201 m)	
1 km	Earth-Sun distance
Height of Mt. Everest (8.85 km)	
10 km	Earth-Moon distance
Deepest part of the Pacific Ocean (11 km)	
100 km	Earth's diameter
Denver to Salt Lake City (880 km)	
1000 km	Height of doorway
Moon's diameter (3475 km)	
10,000 km	Height of Mt. Everest
Earth diameter ($12,756 \mathrm{~km}$)	
$100,000 \mathrm{~km}$	Moon's diameter
Earth Moon distance (384,400 km)	
1 million km	Sun-Mercury distance
Sun's diameter (1,392,000 km)	
10 million km	Ping pong ball
Sun Mercury distance (58 million km)	
100 million km	Sun to Saturn distance
Earth Sun distance (150 million km)	
1 billion km	Sun's diameter
Sun to Saturn distance (1.4 billion km)	
10 billion km	Length of city block
Distance to nearest star (40 trillion km)	

