

Activity – Size and Distance Scale

Objective

Students will match descriptions of various objects and distances to actual metric measurements. This is a great activity to investigate students' preconceptions about astronomical distances.

CORE concepts covered:

STANDARD IV: Students will understand the scale of size, distance between objects, movement, and apparent motion (due to Earth's rotation) of objects in the universe and how cultures have understood, related to and used these objects in the night sky.

Objective 1: Compare the size and distance of objects within systems in the universe.

- a. Compare distances between objects in the solar system.
- b. Compare the size of the Solar System to the size of the Milky Way galaxy.
- c. Compare the size of the Milky Way galaxy to the size of the known universe.
- **Note:** This is a good activity to complement the film *Powers of Ten* by Charles and Ray Eames. There is also a good *Powers of Ten* website at: http://micro.magnet.fsu.edu/primer/java/scienceopticsu/powersof10/

Materials Needed

"Distance & Scale" Worksheet Pencil

Planning

Copy worksheet, one per student

Procedure

- 1. Hand out worksheets which contain the list of challenge objects.
- 2. Students should write each challenge object from the list on the right side in the appropriate place between the distances on the distance scale to the left. Give class members plenty of time to match up the objects with their distances. Encourage opinions and discussions with other students.

3. End the activity with a vote of which object matches with the appropriate distance. Give the correct distances and sizes from the answer sheet (page 3). Be certain to discuss the difference between distance and size. It might be best to do this using an overhead projector. Alternatively, you could post several copies of the "answer sheet" and let students correct any answers that missed the mark –after having the appropriate discussion.

Name _____

Distance & Scale

Directions: Using the spaces between the distances in the left column, write the objects or distances in the right column that best fit between those distances.

1 cm	Diameter of a basketball
10 cm	Deepest part of the Pacific Ocean
1 meter	Denver, CO to Salt Lake City, UT
10 meters	Distance to nearest star
100 meters	House
1 km	Earth-Sun distance
10 km	Earth-Moon distance
100 km	Earth's diameter
1000 km	Height of doorway
10,000 km	Height of Mt. Everest
100,000 km	Moon's diameter
1 million km	Sun-Mercury distance
10 million km	Ping nong hall
100 million km	Sun to Saturn distance
1 billion km	Sun's diamator
10 billion km	
	Length of City DIOCK

Distance & Scale

Directions: Using the spaces between the distances in the left column, write the objects or distances in the right column that best fit between those distances.

1 cm <u>Ping pong ball (about 3 cm)</u>	Diameter of a basketball
10 cm Diameter of a basketball (about 30 cm)	Deepest part of the Pacific Ocean
1 meter <u>Height of doorway (about 2 m)</u>	Denver, CO to Salt Lake City, UT
10 meters House (about 15 to 20 m)	Distance to nearest star
100 meters Length of city block (201 m)	House
1 km <u>Height of Mt. Everest (8.85 km)</u>	Earth-Sun distance
10 km Deepest part of the Pacific Ocean (11 km)	Earth-Moon distance
100 km Denver to Salt Lake City (880 km)	Earth's diameter
1000 km <u>Moon's diameter (3475 km)</u>	Height of doorway
10,000 km <u>Earth diameter (12,756 km)</u>	Height of Mt. Everest
100,000 km <u>Earth Moon distance (384,400 km)</u>	Moon's diameter
1 million km Sun's diameter (1,392,000 km)	Sun-Mercury distance
10 million km Sun Mercury distance (58 million km)	Ping pong ball
100 million km Earth Sun distance (150 million km)	Sun to Saturn distance
1 billion km Sun to Saturn distance (1.4 billion km)	Sun's diameter
10 billion km Distance to nearest star (40 trillion km)	Length of city block